L'exploitation et la maintenance des infrastructures

Structural Health Monitoring, Round Robin Tests

Pascal Trottier – PAVEXPERT Contributors: Benoit Picoux - GC2D Laboratory, Rémi Tautou - University of Limoges, Alain Hebting – CEREMA

Égalité Fraternité AGENCE NATIONALE DE LA RECHERCHE

- Deliverables for the 4 project phases:
- Phase 1: Improving interpretation of monitoring methods for an accurate pavement diagnostic

Authors: Benoit Picoux - GC2D Laboratory, Rémi Tautou - University of Limoges

- Phase 3: High-speed deflection measurements Author: Pascal Trottier – PAVEXPERT
- Phase 4: Round robin tests

Authors: Alain Hebting – Cerema, Pascal Trottier - Pavexpert

- Improving interpretation of monitoring methods for an accurate pavement diagnostic based on impact methods
 - Existing methodology in accordance with equipment (Dynaplaque, Deflectograph, FWD)
 - Structural indicators (SCI, radius of curvature, etc.)
 - Overview of backcalculation software
 - Physical and mechanical variables
 - Temperature, Load, Water content, Layer thickness, Interface, Viscoelasticity

NEW EQUIPMENT

Z

0.1

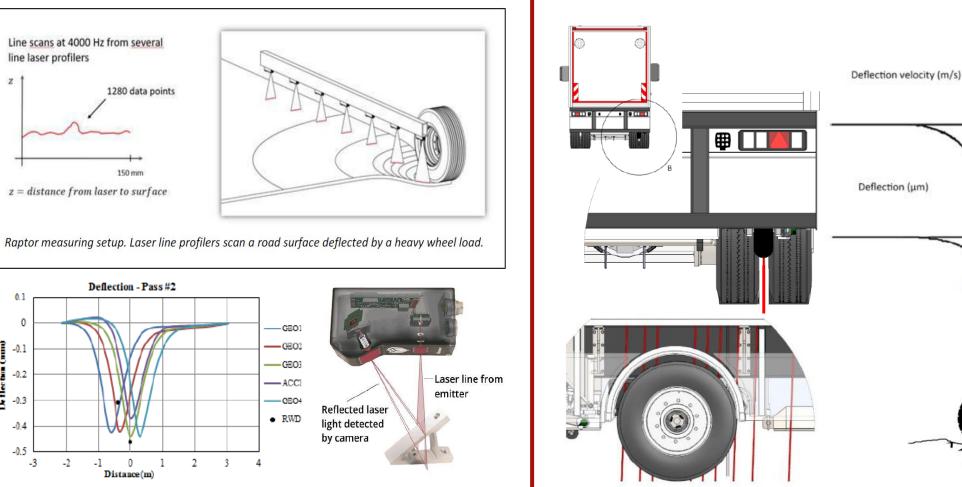
0

-0.1

-0.2

-0.3

-0.4


-0.5

De flection (mm)

DEFLECTION MEASUREMENT PRINCIPLES USED

Raptor

(m/s)

EQUIPMENT THAT HAS EVOLVED OVER TIME

nish Road Directorate United Kingdom

TSD 2: Highways Agencies

The **TSD** family

TSD 3: ANAS Italy

TSD 4: IBDIM Poland

TSD 7: Greenwood Engineering

TSD 8: ARRB Australia

RR ites of America

VRAL

сa

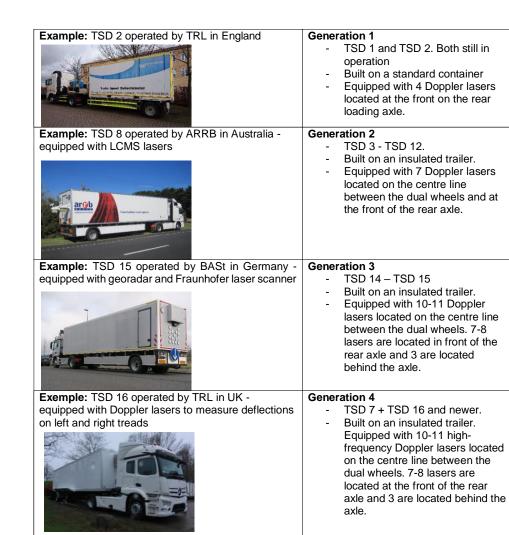
TSD 10: VNA South Africa

TSD 6: RIOH

China

Denmark

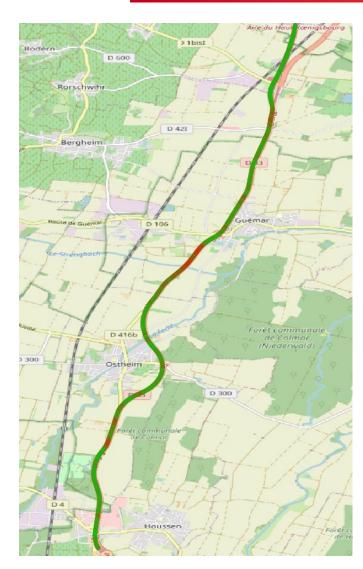
TSD 12: ARRB Australia



TSD 15: Wuppertal Germany

TSD 16: Highways England United Kingdom

AST



Public presentation of results

7 November 2023, ENTPE, Vaulx-en-Velin

Measurements in traffic flow, up to 80 km/h

- No inconvenience to users
- No specific operating constraints (measurements in the daytime, no protection needed)
- BUT measurement in <u>dry weather</u>

Network management

- Identification of weak areas on where to focus the precise diagnostic work
- Prioritisation of work
- Monitoring over time
- Estimation of residual service life (using a model)

International indicators (based on FWD)

Index	Formula	Parameters	Unit
Surface Curvature Index (SCI)	SCIr = D0 - Dr	D0 = Deflection 0 inches from the load $Dr = Deflection r inches from the load$	
Deflection Slope Index (DSI)	DSIr0-r = Dr0 - Dr	D-r = DrO - Dr Dr0 = Deflection r0 inches from the load Dr = Deflection r inches from the load	
Tangent Slope (TS)	$TS_{r} = \frac{dD}{dr}$ $dD = Difference in deflections$ $Dr = Difference in distance$		mil/inches
Radius of curvature (R1)	$R1_{r} = \frac{r^{2}}{[2D_{0}(1 - \frac{D_{r}}{D_{0}})]}$	$ \begin{array}{c} r^{2} & r = \text{Distance from load} \\ \hline \left[2D_{0}\left(1-\frac{D_{r}}{D_{0}}\right)\right] & D0 = \text{Deflection under load} \\ Dr = \text{Deflection at distance r from the load} \end{array} $	
Radius of curvature (R2)	$R2_{r} = \frac{r^{2}}{[2P_{0}(D_{0}/D_{r}-1)]}$	r = C6 D0 = Deflection under load Dr = Deflection at distance r from the load	inches
Deflection basin area (A)	$A = 6\left[1 + 2\left(\frac{D_{12}}{D_0}\right) + 2\left(\frac{D_{24}}{D_0}\right)\right]$	Dr = Deflection r inches from the load	-

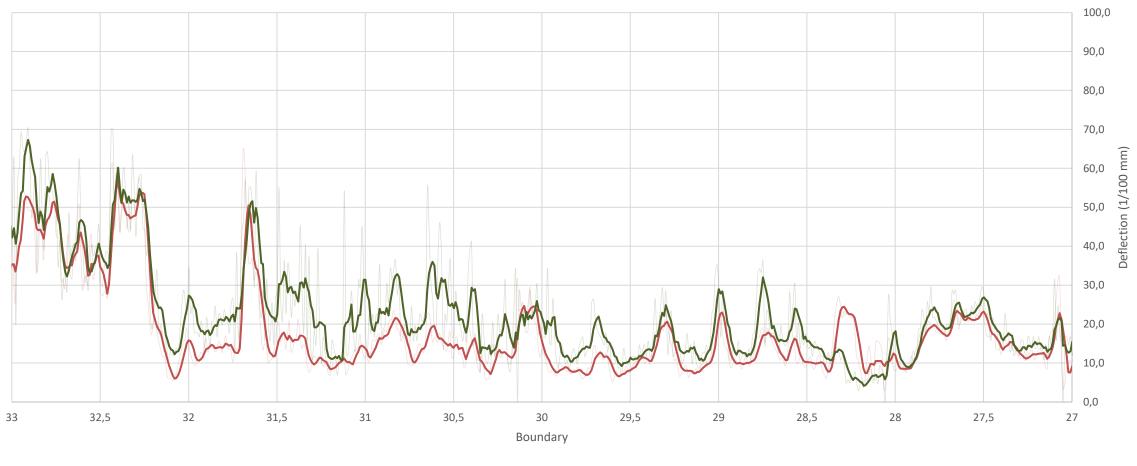
Index	Formula	Parameters	Unit
Shape Factor F1	$F_1 = \frac{D_0 - D_{24}}{D_{12}}$	Dr = Deflection r inches from the load	-
Shape Factor F2	$F_2 = \frac{D_{12} - D_{36}}{D_{24}}$	$F_2 = \frac{D_{12} - D_{36}}{D_{24}}$ Dr = Deflection r inches from the load	
Base Curvature Index (BCI)	BCI = D24 - D36	Dr = Deflection r inches from the load	mil
Base damage index	BDI = D12 - D24	Dr = Deflection r inches from the load	mil
Slope of Deflection (SD)	$SD_r = \frac{tan^{-1}(D_0 - D_r)}{r}$	Dr = Deflection r inches from the load	-
Area Under Pavement Profile (AUPP)	$AUPP = \frac{5D_0 - 2D_{12} - 2D_{24} - D_{36}}{2}$	Dr = Deflection r inches from the load r = Distance from load	mil

Evaluation of tensile stress at the base of the asphalt mix $\epsilon = a(DSI)b$ $\epsilon = a'(SCI300)b'$ Rada (2016)

With the following parameters:

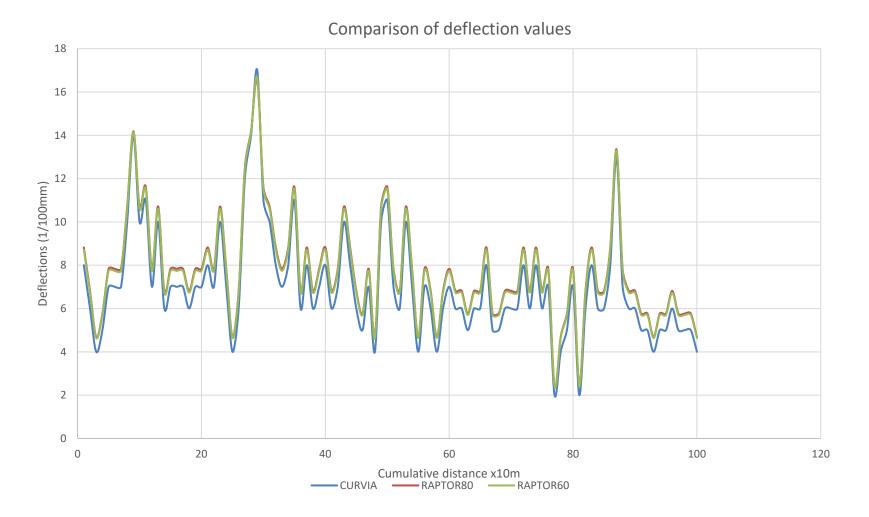
As a reminder (1 inch = 2.54 cm)

Parameter				
а	b			
66.96	0.9351			
62.567	1.0174			
64.660	1.0379			
71.646	1.0005			
74.381	0.9757			
76.458	0.9427			
77.802	0.9107			
77.868	0.8674			
76.861	0.8395			
75.154	0.8149			
72.194	0.778			
70.196	0.7824			
66.402	0.7525			
69.100	0.9348			
75.100	0.9532			
75.170	0.8579			
	a 66.96 62.567 64.660 71.646 74.381 76.458 77.802 77.868 77.868 76.861 75.154 72.194 70.196 66.402 69.100 75.100			


	Parameter			
AC Layer Thickness	a'	b'		
3-4 inches	52.438	0.9620		
4-5 inches	50.814	1.0200		
5-6 inches	53.725	1.0240		
6-7 inches	59.704	0.9870		
7-8 inches	62.539	0.9520		
8-9 inches	64.595	0.9120		
9-10 inches	65.645	0.8820		
10-11 inches	65.656	0.8373		
11-12 inches	64.639	0.8103		
12-13 inches	63.058	0.7895		
13-14 inches	60.592	0.7479		
14-15 inches	58.494	0.7594		
15-16 inches	55.386	0.7285		
3-6 inches (Thin)	57.818	0.9270		
6-9 inches (Medium)	63.202	0.9350		
9-16 inches (Thick)	62.538	0.8412		

Raptor-Flash comparison RN66 - PR 33 - 27

Raptor — Flash — 5 Moy. mobile sur pér. (Raptor) — 5 Moy. mobile sur pér. (Flash)

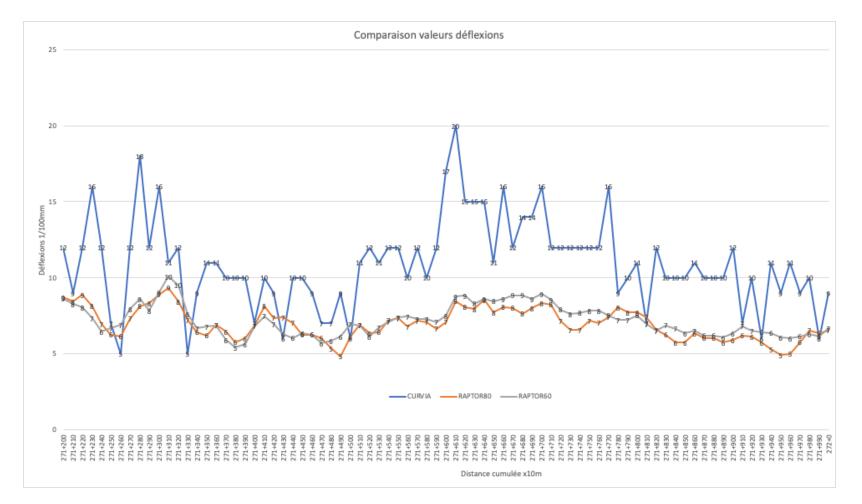


Public presentation of results

7 November 2023, ENTPE, Vaulx-en-Velin

Direction 1 - Thick asphalt structure

- Comparison of values over 13 km Direction 1
 - Mean difference:
 - 0.747
 - Standard deviation:
 - 0.12
 - Mean squared error:
 - 0.60


► If values with weighting + 0.75

- Mean squared error:
 - 0.04
- Mean difference:
 - 0.0025
- Standard deviation:
 - 0.12

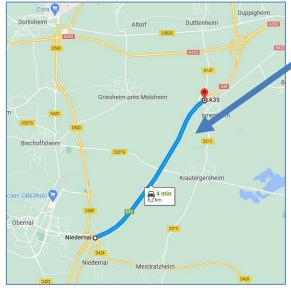
Direction 2 - Thick asphalt structure

- Comparison of values over 13 km Direction 2
 - Mean difference Curviameter/Raptor 80km/h
 - 1.56
 - Standard deviation:
 - 2.29
 - Mean difference Curviameter/Raptor 80km/h
 - 1.33
 - Standard deviation:
 - 2.31

Flash Deflectograph

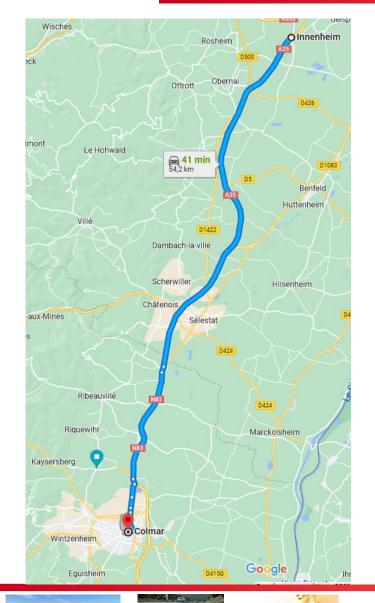
	0	1	2	3	4	5	6	7	8	9	10
1er passage											
2ème passage											
3ème passage											
4ème passage											
5ème passage											
6ème passage											

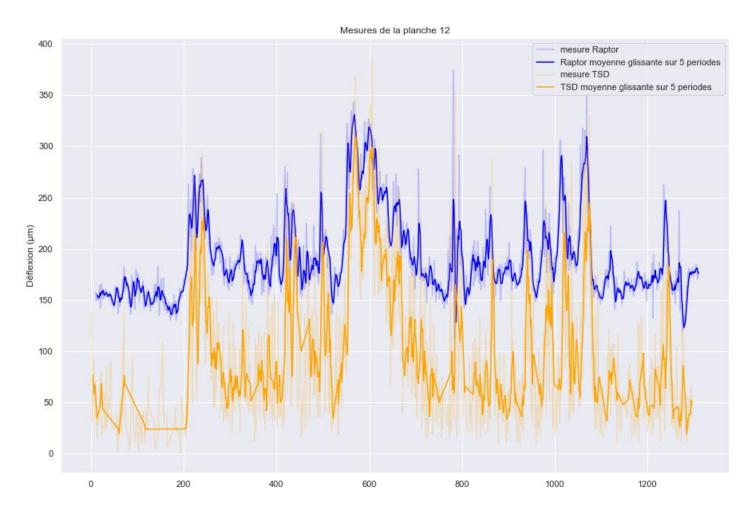
TSDDs


ALL A

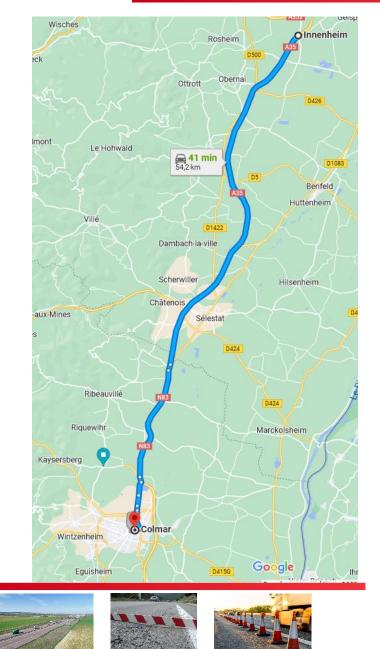
ROUND ROBIN TESTS

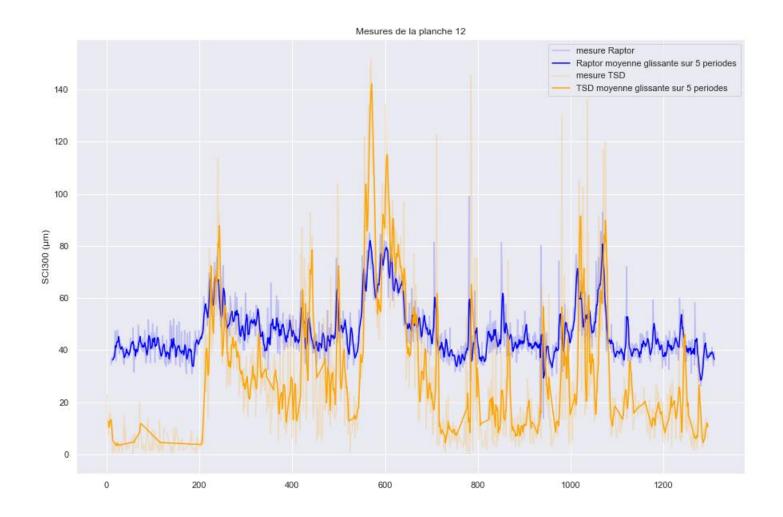
DVDC project sections

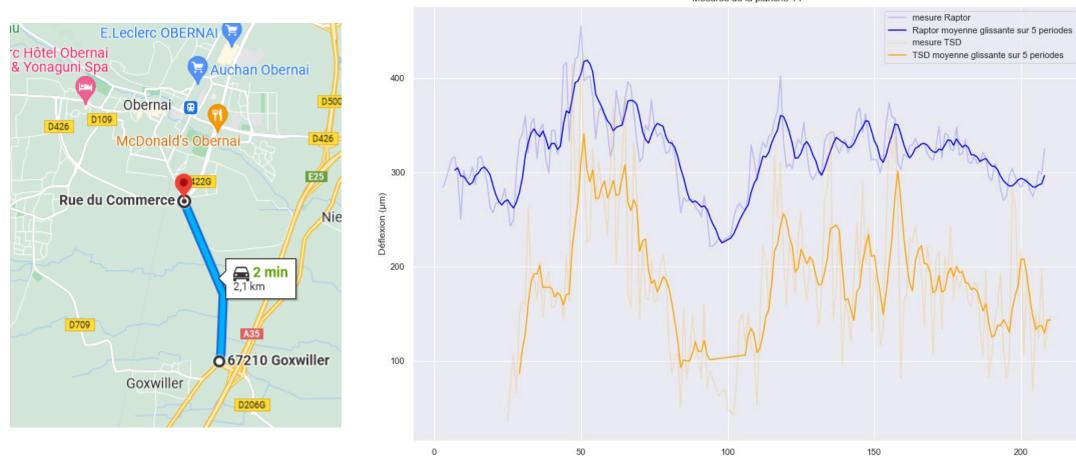


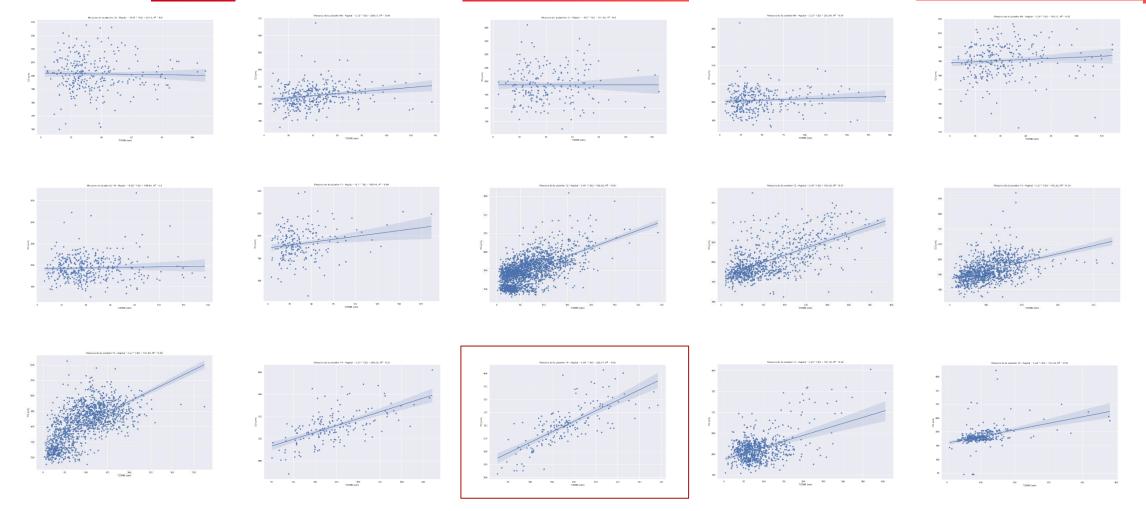


- ► Entire route (168 km)
- ► A35:
- Bituminous and hydraulic
- ► RN83:
- Bituminous and hydraulic
- ► RD422:
- Flexible
- ► RD500:
- High modulus asphalt
- ► RD1422:
- Reinforced with geogrid
- ► RN4:
- Historical route
- ► A351:
- New, bituminous

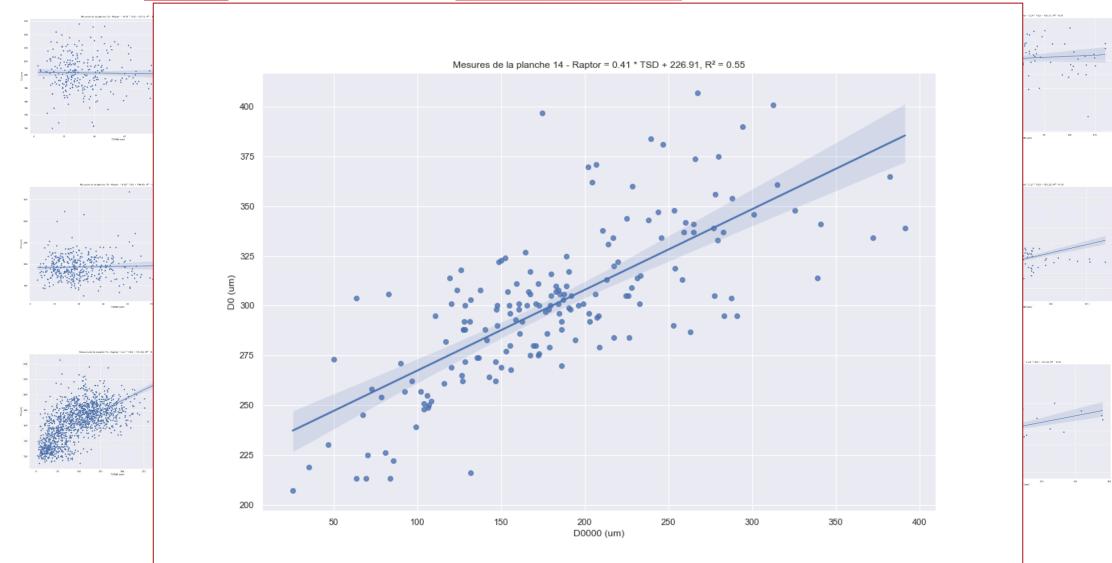


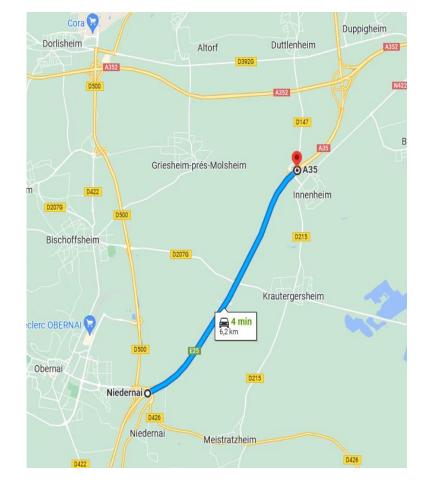




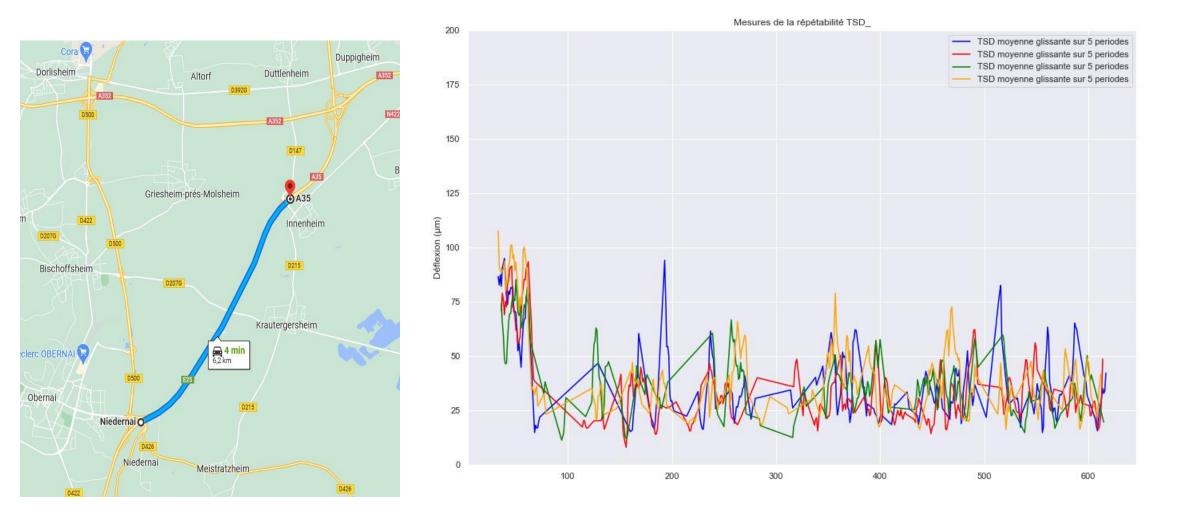


Mesures de la planche 14


CORRELATIONS – RAPTOR = F (TSD) – $R^2 \leq 0.55$



CORRELATIONS – RAPTOR = F (TSD) – $R^2 \leq 0.55$



RESULTS – REPEATABILITY

> Field of application

- Possible to make comparisons between the two devices:
 - Network-wide monitoring.
 - Homogeneous areas
- Attention must be paid to the geolocation variable for repeatability/reproducibility.
- Deviation of the deflection value itself and, therefore, of the characteristic deflection according to the structure in place.
 - The greater the deflection value, and thus the more flexible the structure, the less significant the difference between the devices;
 - Both devices have been tested by their respective manufacturers on rather flexible pavements, and use an FWD as a reference;
 - Further testing is needed to assess this effect.

THANK YOU FOR YOUR ATTENTION

Pascal Trottier ptrottier@pavexpert.com +33 (0)7 86 72 38 80

