L'exploitation et la maintenance des infrastructures

Theme 1 - Deterioration mechanisms 1.2 – Bearing soil & flexible road pavements

Summary of international methods for designing flexible road pavements and unpaved roads

Égalité Fraternité AGENCE NATIONALE DE LA RECHERCHE

Public presentation of results 7 November 2023, ENTPE, Vaulx-en-Velin

Composition of the study (3 parts)

- Part one summary of flexible road pavement methods
 - empirical methods,
 - analytical methods,
 - catalogues of typical structures.

Part two – summary of unpaved road methods

Objective: literature review

- brief descriptions of the methods,
- consideration of the soil,
- consideration of granular materials.

Total: 12 design methods

Composition of the study

- Part three
 - 3 more methods
 - Analysis of the Belgian method (analytical method);
 - Analysis of the German method (catalogue of structures);
 - Analysis of the Japanese method (empirical method).
 - Comparative example
 - 8 methods:
 - » Guides: French, AASHTO, DRMB, Canada, Japan
 - » Catalogues: Spanish, German, Senegal
 - Assumptions:
 - » Typical Structure:
 - » Service life: 20 years
 - » Maximum traffic: 250,000 HGV

Flexible

5AS BBG3 min. thickness UGM Soil (PF2qs EV2 80MPa)

Objective:

- Create a summary table containing information such
- as: reference axles, UGM characterisation, climate, risks/uncertainties, design duration, etc.

Objective:

 Use different methods to calculate equivalent structures

► The references used

No.	Method	Reference
[1]	Road Note 31	Transport Research Laboratory Road note 31 - A guide to the structural design of bitumen surfaced roads in tropical and sub- tropical countries-1993*
[2]	CEBTP	CEBTP - Practical guide for designing road pavements for tropical countries (<i>Guide Pratique de dimensionnement des chausses pour les pays tropicaux</i>) - new 1984*
[3]	Australian	AUSTROADS Part 2 2012*
[4]	American	AASHTO guide for design of pavements structures, American Association of State Highway and Transportation Officials, 1993 (and 1998 for rigid pavement)
[5]	English	DMRB Design Manual for Roads and Bridges – Highways Agency, Volume 7, Section 2, Part 3 – HD 26/06, + Part 1 – Traffic Assessment - HD 24/06, February 2006.
[6]	Algerian	Catalogue of designs for new road pavements by the National Body for Technical Inspection of Public Works (Catalogue de Dimensionnement des Chaussées Neuves de l'Organisme National de Contrôle Technique des Travaux Publics) (CTTP) Algeria 2000
[7]	French	French standard NF P 98-086, Structural design of road pavements (Dimensionnement structurel des chaussées routières) 2011
[8]	South African	South Africa SATCC – July 2001 – Code of Practice for the Design of Road pavements – draft*
[9]	Tanzanian	Tanzania – pavement and materials design manual – 1999*
[10]	Viziret	Viziret Qualification and quantification of deteriorations to an unpaved road for the programming and monitoring of maintenance work (<i>Viziret qualification et quantification des dégradations d'une route non revêtue pour la programmation et le suivi des travaux d'entretien</i>) – Bulletin des Laboratoires des Ponts et Chausses No. 213 1998.
[11]	Spanish	Spanish road pavement structure catalogue – norma 6.1 IC secciones de formes*
[12]	Senegalese	Catalogue of new road structures and Road sizing guide in Senegal (Catalogue de structures de chaussées neuves et Guide de dimensionnement des chaussées au Sénégal) - 2015

Public presentation of results 7 November 2023, ENTPE, Vaulx-en-Velin

Empirical methods

- Approach: parameters are defined based on observations
- Detailed analysis (general points, advantages, disadvantages): AASHTO, DMRB

► AASHTO EXAMPLE - M_R

- Soil taken into account with the M_R characteristic, the reversible modulus,
- Characteristic that quantifies the stiffness of a soil,
- Characteristic can change during the different seasons of the year, especially during the frost period,

Example – AASHTO method

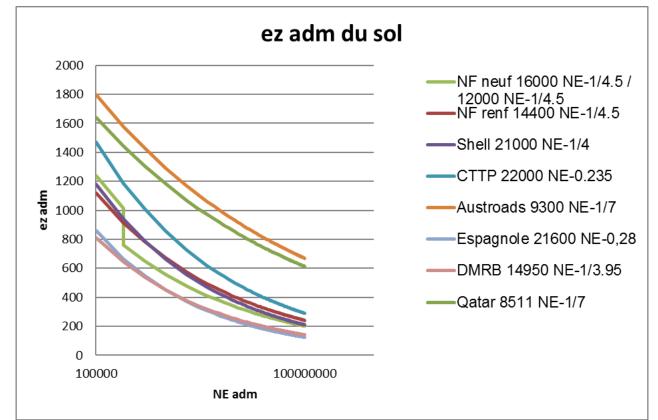
Table 1 Models linking the indices and strength properties of certain materials to the reversible modulus M_r

Strength/Index Property	Model	Comments	Test Standard
CBR	$M_r = 2555(CBR)^{0.64}$	CBR = California Bearing Ratio, percent	AASHTO T193—The California Bearing Ratio
R-value	M _r = 1155 + 555R	R = R-value	AASHTO T190—Resistance R- Value and Expansion Pressure of Compacted Soils
AASHTO layer coefficient	$M_{\tau} = 30000 \left(\frac{a_i}{0.14}\right)$	a _i = AASHTO layer coefficient	AASHTO Guide for the Design of Pavement Structures (1993)
PI and gradation [#]	$CBR = \frac{75}{1+0.728(wPI)}$	wPI = P200*P1 P200= percent passing No. 200 sieve size PI = plasticity index, percent	AASHTO T27—Sieve Analysis of Coarse and Fine Aggregates AASHTO T90—Determining the Plastic Limit and Plasticity Index of Soils
DCP*	$CBR = \frac{292}{DCP^{1.12}}$	CBR = California Bearing Ratio, percent DCP =DCP index, in/blow	ASTM D6951—Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications

*Estimates of CBR are used to estimate Me.

Source : AASHTO (2002).

Analytical methods


- Criterion: check that the actual stresses (related to the passage of a reference load) remain less than the admissible values for a given number of cycles,
- The methods do not necessarily contain the concept of a flexible road pavement,
- Probabilistic: taking into account the dispersion and random nature of the various factors (characteristics of the materials, thickness of the course), calculation risk, etc.

- Allowed vertical deformation at the top of the soil:
 - Méthode Austroads : _{sz adm} = 9300 NE -0,142
 - DMRB : ε_{z adm} = 14 950 NE -0,253
 - Catalogue d'Algérie _{sz adm} seul pour structure souple = 22 000 NE -0.235
 - Méthode française et le Catalogue du Sénégal:
 - Faible trafic NE \leq 250 000 : $\varepsilon_{z adm}$ = 16 000 *NE -0,222 ;
 - Fort trafic NE ≥ 250 000 : ε_{z adm} = 12 000 *NE -0,222
 - Viziret : ε_{z adm} = 21000 NE -0 ,25 pour 85% fiabilité
 - Catalogue espagnol : 21600 NE -0 ,28
 - Méthode Belge :

 Different levels of E_z depending on the type of method used

L'exploitation et la maintenance des infrastructures

Liberté Égalité Fraternité

Conclusions parts 1 and 2

- Empirical methods are based on observations and are therefore more difficult to adapt to a new environment,
- Rational methods take into account a large number of parameters => a theoretical knowledge of the method is necessary,
- For certain empirical methods and catalogues, episodic revision seems desirable to take into account new theoretical and technical knowledge and new observations of the actual behaviour of the sections,
- It is essential to incorporate local experience into the estimate,
- The influence of climatic phenomena (duration and frequency of rainy periods, freezingthawing) is not systematically incorporated into the design.
- There is significant variation in moduli and deformations depending on the methods used

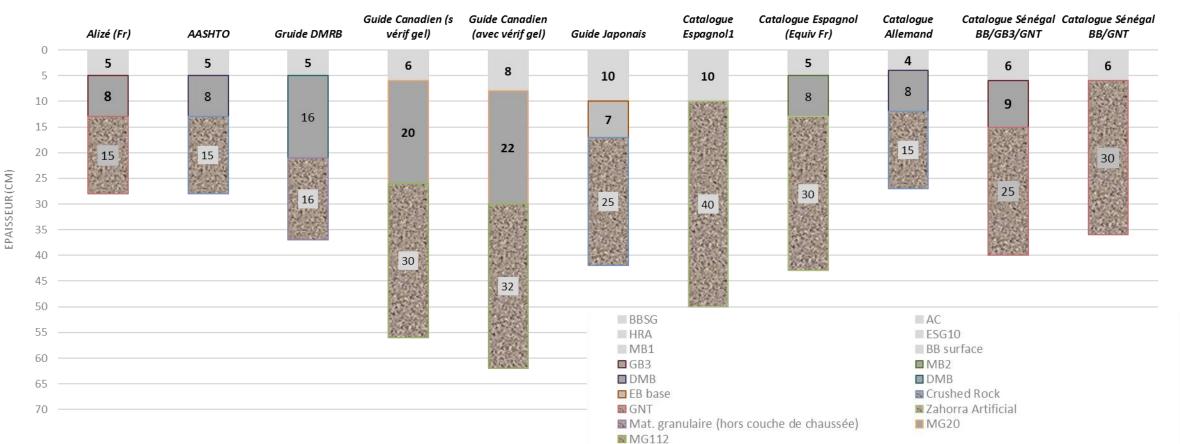
Considerations on the methods used for the comparison

Method	Reference axle	Temperature / Materials / Subgrade	Design time
Alizé (FR)	13t	TRef 15°C / Roadbed bearing capacity	20
AASHTO	8.16t	TRef 20°C / Roadbed CBR	20
Japanese guide	5t	Characterization of materials by Marshall/CBR stability	10 (but possibility of taking into account a different duration)
DMRB Guide	8.16t reference axle; Reference temperature = 20°C; Dissociation of CBR and subgrade class; granular materials are not counted as a road pavement course	TRef 20°C / CBR	20
Canadian Guide	8.16t	TRef by Region: 20.5°C north and 17.5°C south / CBR	25
Spanish catalogue	13t	TRef 20°C / CBR / Bearing capacity	20
German catalogue	10t	Not mentioned / Bearing capacity	20
Senegal catalogue	13t	TRef 34°C / Bearing capacity	10 to 30 (depending on the network) but more often 20 years

Reference Method: French method (NF 98 086):

- Wearing course: SCAS Cl2, 7000 MPa (15°C, 10Hz)
- Base course: BBG Cl3
- UGM sub-base
- Roadbed: 80 MPa
- Service life: 20 years;
- Maximum traffic: 250,000 HGV
- T4 traffic
- NE: 0.075 x 10⁶

Structure: 5SCAS CL2 + 8BBG3 + 15UGM



7 November 2023, ENTPE, Vaulx-en-Velin

Road pavement structures using the selected methods

Structures - 5 Guides et 3 Catalogues

MÉTHODES

Public presentation of results 7 November 2023, ENTPE, Vaulx-en-Velin

Conclusions Part 3

- The main variations in thickness are observed in countries with much harsher winters than France. The greatest thickness was obtained with the Canadian Guide
- The characteristics of the materials also have an influence on thickness
- The catalogues also show differences due to the fact that they are assigned to a traffic class

