L'exploitation et la maintenance des infrastructures

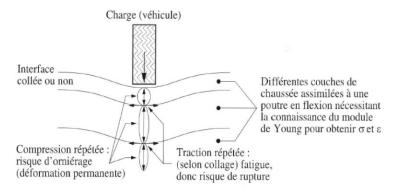
BONDING OF COURSES

In situ performance characterisation of surface course interfaces

Égalité Fraternité Philippe Barriere, CORE Center Anne DONY, ESTP

- Context and objectives
- Analysis of the current situation
- Development of an in situ measurement device
 - Study phase and laboratory tests
 - Field measurement campaign
 - Teaching and interest of the profession
 - Industrialisation
- Conclusion and outlook

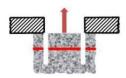
- Course delamination: one of the causes of deterioration in road pavement structures...
- Need to characterise bonding quality


DVDC Consortium: Pérennise Chaussées/Road Pavement Durability, University of Limoges, ESTP/ENSAM, RDF (via COLAS), EUROVIA, EIFFAGE

► Specifications:

- In-situ test producing a torsional shear effect
- Rapid, inexpensive, semi-destructive, common and accessible to the entire profession
- Reliable and functional method with acceptable metrology (Standard approval)

v. Domec : Fatigue damage to bituminous mixes under simulated traffic and temperature conditions; Bordeaux; 2005


Several approaches...:

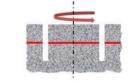
3 normative monotonic tests

- Multiple stresses (shear, tension, compression) depending on the bonded, semi-bonded interface, etc.
- Normal vehicle load stress
- Cyclic combined load
- Variant (braking, acceleration, cornering, etc.)

Complex stress zone....

Tensile (TAT):

0 +1 °C ou 10 ±0,5 °C


Lab and

jobsite

200 N/s

 $Ø = 100 \, \text{mm}$

Shearing (SBT) : 20 ±1 °C 50 ±2 mm/min Ø = 100 mm

Lab

Torque (TBT) : 20 ±2 °C 30 ±15 s/90° Ø = 100 mm

Lab and jobsite

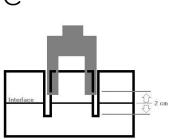
Via testing machine						Torque spanner according to standard (manual therefore
	Type of test	T test (°C)	Speed	σ _{rupture} (MPa)	CV	possibility of an in situ test on site)
	Tensile strength	10°C	200N/s	1.64	12%	he mechanical torsion tests, we saw that the up to 900N.m, which translates into the mass nd of a one-metre bar (around 90Kg). This of manual testing." G. Marmer
ing ne	Shear	20°C	50 mm/min.	1.73	15%	Via testing machine (Eurovia mechanical device)
	Torsion (via device)	20°C	90°in 30 sec i.e. 196 mm/min	3.38	5%	

Difficulties in comparing results... different conditions and strong influence of test conditions

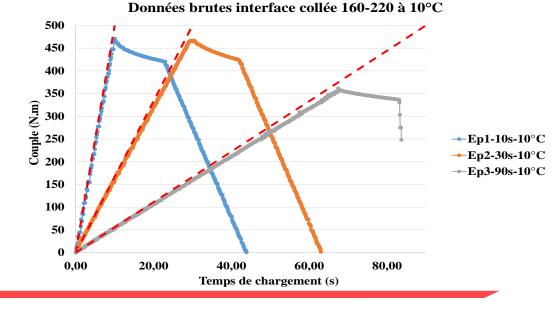
Via testing machine

Ref: Dony, A., Koutiri, I., Yvinec, B., Godard, E. (2016). Analysis of the Draft European Standard on Interlayer Bonding and Understanding of the Influencing Factors. In: Chabot, A., Buttlar, W., Dave, E., Petit, C., Tebaldi, G. (eds) 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements. RILEM Bookseries, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0867-6_71

Step 1: Laboratory study and testing phase (2018)



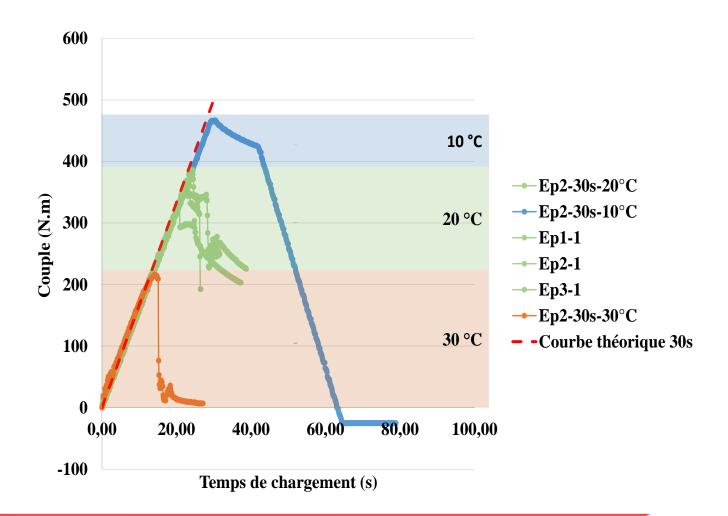
Evaluation and parameterisation of the proteins


- Experimental design:
 - ECR 69 to 35/50, 160/220 and 35/50 amended
 - 10°C, 20°C and 30°C
 - 3 repeatabilities

SCAS BBG

\$150 r

- Prototype parameterisation
 - Loading ramp
 - Rotational fracture
 - Influence of temperature



► Lab test results

- Influence of T° on stress
- Fracture beyond 500Nm at 10°C
- No effect of the emulsion type

Stage 2: field measurement campaigns (2019)

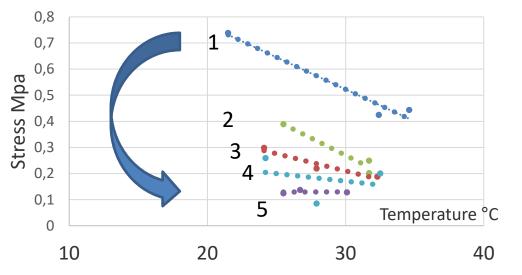
4 fields of play

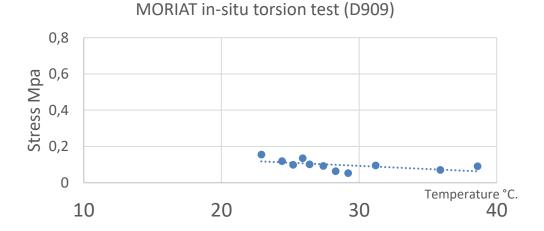
- USSEL (19) Former RN 89 (April)
- UGE fatigue carousel (Nantes 44) (May)
- RD909 PN MURE (Moriat, 63)) (July)
- N102 New bituminous mix (Brioude 43) (September)
- Objectives and test programme
 - Field logistics
 - Temperature control?
 - Influence of media or interface types

15 minutes Handling time

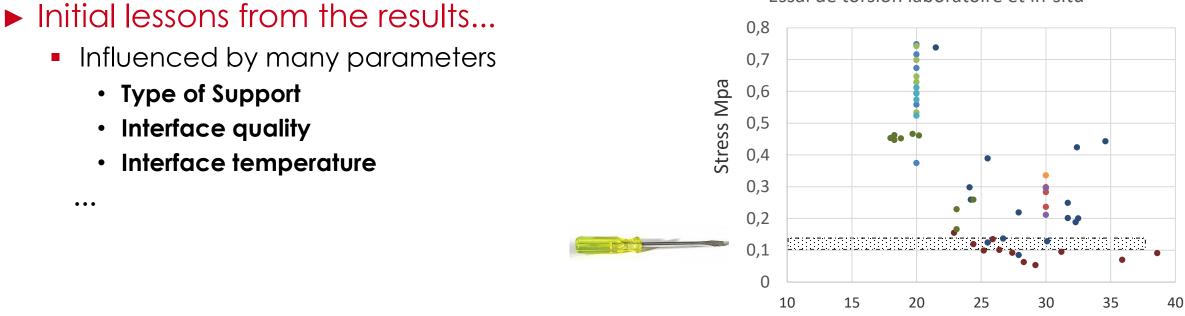
- ▶ 15 minutes in the field (set-up, measurement and dismantling)
- Immediate, quantified results (test curve)
- A prototype that does not prefigure the commercial version

Simple temperature measurement procedure (at a point close to the area being assessed)


Rapid non-destructive pothole patching solutions



Nantes in-situ torsion test (Université G. Eiffel)


- 1. Standard bonded to the emulsion
- 2. Bonded interface
- 3. Bonded interface
- 4. Normally bonded interface
- 5. Poorly bonded interface

Unbonded screwdriver test \rightarrow < 0,15 MPa Minimum test parameters No influence of temperature

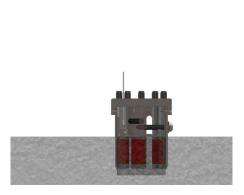
Essai de torsion laboratoire et in-situ

→ Relevance of a stress threshold?

Temperature °C

Exchange seminar (14/10/20) + Laboroute laboratoires survey

► A rich discussion:


- Desire for a very simple and rapid technique for site inspections or expert appraisals BUT phenomena are complex
- Unsatisfactory EU standard and interest in the developed device BUT need further work
- Various complementary technical and research resources developed

Real interest in field testing subject to cost, ergonomics and speed

Industrialisation of the prototype New "field" tool developed by DVDC

According to precise specifications

New "field" tool developed by DVDC

→ First PROVITEQ proposal combined with MICROTEST....
 Discussions, exchanges and compromises!

Proposal for a costed device with identified supplier

- ► Promising experiments with a prototype → design of a tool in line with specifications
- Complex theoretical approach between interface fatigue and monotonic testing
- Development program to be continued... in DVDC ... beyond DVDC?...
- Need to collect jobsite data (feedback)
- Positioning in relation to the European standard : asserting the French position...
- Definition of threshold specifications qualifying the bonding of courses is too premature

ACHIEVEMENTS

Summary of Productions and Achievements

► Reports

- Report DVDCR014-Th1 Towards in-situ performance characterisation of surface courses (phase 1)
- Report DVDCR017-Th1- In situ road pavement bonding system (phase 2)
- Report DVDCR030-Th1- Towards in situ performance characterisation of surface course interfaces (phase 3)

Articles

- RGRA No.963 May 2019
- RGRA No.977 Nov/Dec 2020

Seminars

- FNTP 20 Oct 2020 + media distribution
- DVDC 23 JANUARY 2020 "Information day on monitoring techniques and road pavement service life" : In situ performance-based characterisation of road pavement interfaces using a new measurement device - A Dony/P Barrière/L Brissaud

Communication

- Eurobitume Madrid 2020 + Poster
- JTR 2022 (DVDC workshop)

Philippe BARRIERE CORE Center by COLAS <u>barriere@colas.com</u>

Anne DONY ESTP adony@estp.fr

