L'exploitation et la maintenance des infrastructures

Towards enriched mechanical models (modelling of discontinuities, crack initiation and deflection evolution)

Models of structural deterioration

C. Chazallon, Saida Mouhoubi, <u>L. Coulon</u> ICUBE, UMR 7357, INSA Strasbourg A. Dansou LTDS, UMR 5513, ENI Saint Etienne

Égalité Fraternité AGENCE NATIONALE DE LA RECHERCHE

Public presentation of results 7 November 2023, ENTPE, Vaulx-en-Velin

Models of structural deterioration

Objectives:

Analyse the measurements of deflection basins in light of numerical mechanical modelling, in order to characterise the state of cracking of road pavement structures.

- Finite element approach: case of delamination and vertical cracking without propagation in 3D geometry
- Boundary element approach: case of 3D crack propagation

(1): P. Gaborit, Comportement thermo-mécanique de structures de chaussées bitumineuse (thermo-mechanical behaviour of bituminous pavement structures), PhD thesis, ENTPE, 2015

FINITE ELEMENT METHOD

Main deteriorations considered

- Delamination between 2 courses and opening of the interface. The surfaces considered can be large (15 m²) or small (~ 1 m²)
- Short (1 m) or long (9 m) transverse or longitudinal cracks with a spacing interval of 0.2 m
- Course thickness variation +/-1 cm
- Calculated deflections
 - Absolute deflection
 - Simulation of deflection measurement using a curvometer

Transverse cracks in a course

Road pavement layers	Wearing CoR (TAS)	Link 1 CL1 (BBG)	Link 2 CL2 (BBG)	Base CdB (BBG)	Foundation CdF (BBG)	Soil (PF3)
Thickness [m]	0.04	0.04	0.05	0.10	0.11	3.00
Behaviour	Elastic	Elastic	Elastic	Elastic	Elastic	Elastic
E [MPa]	4581	4581	4581	5174	13680	120
ν	0.35	0.35	0.35	0.35	0.35	0.25

TABLE 1: CHARACTERISTICS OF THICK ASPHALT ROAD PAVEMENTS. CoR to Bond: data taken from the standard,

Base - Foundation: values deduced from complex modulus tests. Temperature and frequency measured under loading: $17^{\circ}C$ and 8.1 Hz

Curvometer type loading

Public presentation of results 7 November 2023, ENTPE, Vaulx-en-Velin

Comparison Alizé - César (EF) Thick asphalt road pavement

Maximum deflection (mm)	Alizé [transversal]	CESAR [transversal]	Alizé [longitudinal]	CESAR [longitudinal]	Alizé-César spread [transversal]	Alizé– César spread [longitudinal]
Without						
delamination	-0.2277	-0.2230	-0.2115	-0.2061	2%	3%
CoR_L1(*)	-0.2530	-0.2452	-0.2337	-0.2260	3%	3%
L1_L2(*)	-0.2800	-0.2687	-0.2622	-0.2506	4%	4%
L2_Base(*)	-0.3135	-0.2973	-0.2997	-0.2818	5%	6%
Foundation_Base(*)	-0.3263	-0.3083	-0.3145	-0.2944	6%	6%

* With complete delamination of the interface (5*15 m²)

Characteristics of the interface with perfect sliding (César (EF))

Sliding interface	RT	E
CoR – Link 1	1 MPa	4581 MPa
Link 1 – Link 2	1 MPa	4581 MPa
Link 2 – Base	1 MPa	4581 MPa
Base - Foundation	1 MPa	5174 MPa

We note that the ALIZE model corresponds to our modelling using the CESAR (EF) software.

- The perfect sliding of the ALIZE software corresponds to a sliding surface with a tensile strength coefficient RT= 1MPa (tensile opening limit) and a Young's modulus equal to the smallest modulus of two courses in contact.

Reduced sliding surface (1.3*1.18 m²) and interface without resistance

Sliding interface with opening			
RT	E		
1 kPa	1 MPa		

	Maximum deflection (mm)			
Interface	César (EF)	Increase/without		
	[transversal]	delamination		
Without delamination	-0.223	-		
CoR – Link 1	-0.353	+56.88%		
Link 1 – Link 2	-0.316	+40.44%		
Link 2– Base course	-0.302	+34.22%		
Base course – Foundation	-0.272	+20.88%		

FINITE ELEMENT METHOD

 Thick bituminous structure.
 Simulation of deflection basins using a curvometer calculation.

Deflection basins derived from the finite element calculation and simulation of the basin using a curvometer type calculation. (short longitudinal cracks)

	Position of the 6 short longitudinal cracks	Transverse axis (EF)	Longitudinal axis (EF)	Curvometer (longitudinal calculation)
		w _{max} [mm]	W _{max} [mm] / relative deviation from non- cracked case	W _{max} [mm] / relative deviation from non- cracked case
	No cracks	0.226	0.209	0.130
	Wearing course	0.229	0.215 / 2.9%	0.139 / 6.9%
	Link 1	0.231	0.213 / 1.9%	0.136 / 4.6%
	Link 2	0.235	0.232 / 11%	0.156 / 20%
	Base	0.245	0.227 / 8.6%	0.149 / 14%
5	Foundation	0.247	0.232 / 11%	0.156 / 20%

Summary of calculated maximum vertical displacements (_{W max}) (finite elements and curvometer) in absolute values for the thick bituminous pavement

Position of the 6 long longitudinal cracks	Transverse axis (EF)	Longitudinal axis (EF)	Curvometer (longitudinal calculation)
	w _{max} [mm]	w _{max} [mm] / relative deviation from non- cracked case	W _{max} [mm] / relative deviation from non- cracked case
No cracks	0.226	0.209	0.130
Wearing course	0.263	0.216 / 3.3%	0.140 / 7.7%
Link 1	0.262	0.247 / 18.2%	0.171 / 31.5%
Link 2	0.260	0.244 / 16.8%	0.168 / 29%
Base	0.259	0.241 / 15.3%	0.165 / 26.9%
Foundation	0.265	0.250 / 19.6%	0.174 / 33.8%
			6

3D propagation of crack networks

- Developments are carried out using the Boundary Element Model
 - Great flexibility in structuring 3D geometries
 - Highly accurate determination of singular fields in the vicinity of cracks
 - Linking with the fast multipole method to set up a structural calculation code for **3D elasticity** and **3D fracture mechanics**.
- Paris law

$$\frac{da}{dN} = A.\Delta K^m \qquad \Delta K = K_{\max} - K_{\min}$$

- The stress intensity factors at node 2 are determined for propagation modes I, II, III
- The angle of propagation is given by the criterion of the maximum tangential stress

Simulation of a road pavement with internal cracks

	Thickness (mm)	E (MPa)	ν
Wearing course	66	6610	0.35
Granular course	500	180	0.30
Soil	2220	80	0.25

#	N_c	N_{init}	$N_{\rm end}$	$T_{\rm pre}({\rm s})$	$T_{sol}(\mathbf{s})$	$T_{\rm tot}({\rm s})$
1	1	15441	18033	201	667	883
2	3	17559	25335	345	1382	1749
3	5	19677	32637	1241	3166	4434

Calculation time for 1, 3 and 5 cracks

Shape of three cracks (diameter 20 mm) after propagation

(crack opening in mm)

3D load distribution and pairing footprints: 2 *(0.18m * 0.3m)

Public presentation of results 7 November 2023, ENTPE, Vaulx-en-Velin

Simulation of a road pavement with an open crack, grid reinforcement and overlay
p=0.6 MPa

Effects of reinforcements on crack propagation according to X of the crack (diameter 50 mm)

Conclusion and outlook

- Finite element calculations
 - For **delamination**: importance of interface, position and surface characteristics
 - For **vertical longitudinal (or transverse) cracks**: effect of the crack's position and length on the deflection basin.

The longitudinal deflection measured by a **curvometer type calculation** follows this trend. This calculation is slightly more sensitive (20%/11% (short cracks) - 30%/17% (long cracks).

- The **maximum relative deflection** (cracked/uncracked comparison) resulting from a theoretical longitudinal measurement (finite element calculation) is **4/100 mm** and that estimated by a curvometer type calculation is of the order of **5/100 mm**.
- Boundary element calculations
 - **3D crack path** strongly controlled by the direction of maximum tangential stress
 - The model shows faster crack propagation at the surface than in the material
- Outlook
 - Development of methods relating to the intersection of crack networks and propagation directions
 - Search for instrumented experiments or benchmarks

