L'exploitation et la maintenance des infrastructures

Analysis of cores from the ATMB worksite Additional use of database in relation to laboratory tests

Égalité Fraternité Sébastien Quigniot, CORE Center Anne Dony, ESTP

ENTPE - 7 November 2023

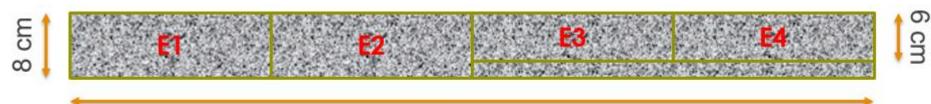
Reminder of the MURE NP objectives/approach

Analysis of cores from the ATMB worksite

- Context and approach
- Coring plan
- Interpretation of binder analyses
- Findings

Additional use of database in relation to laboratory tests

- Working group
- Creation of a coherent database
- Analysis by database
- Principle of the statistical method
- Findings and perspectives

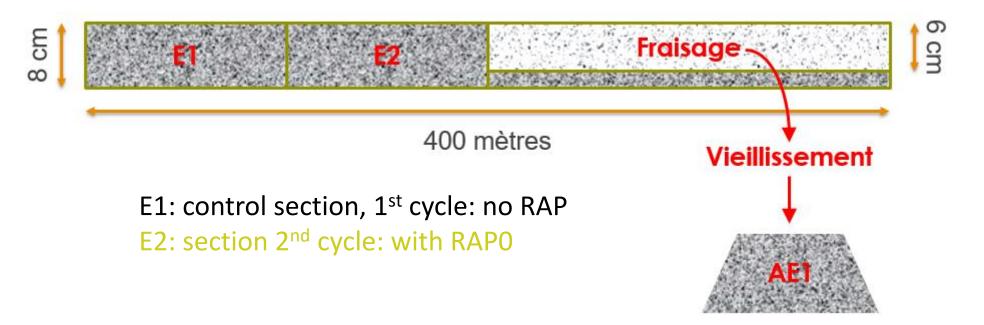


- Reminder of the MURE NP objectives/approach
- In late 2000, development of recycling and warm-mix asphalts BUT inconsistent practices
 → need to instil confidence among stakeholders
- Improve technical/scientific knowledge
- Anticipate "multi-recycling" issues
- NP ran from **2014 to 2021**, with 4 phases and 1 ANR IMPROVMURE project, 35 partners
- Project focused on creating **experimental worksites** under various controlled conditions
 - A wearing course
 - A recycling rate (40% or 70%)
 - A production temperature for asphalt mixes ("hot mix asphalt" as a reference)
 - A process for reducing this temperature (additive or foam)
- Supplemented with laboratory studies

- ► Worksite type
 - ▶ 4 sections \rightarrow 4 life cycles
 - ► Principle
 - Formula: SCAS
 - Initial RAP stock: RAPO

400 mètres

E1: control section, 1st cycle: no RAP E2: section 2nd cycle: with RAPO


E3: section 3rd cycle: with RAP1

E4: section 4th cycle: with RAP2

- Worksite type
 - 4 sections \rightarrow 4 life cycles
 - Principle
 - Formula: SCAS
 - Initial RAP stock: RAPO

► List of worksites completed

Location	Year	% RAP	Specific characterics	Multi-recycling year	
Rue du Canal, Villeurbanne	2015	40%	Warm additive	2017	
RD313 Ronno (69)	2015	40%	-	-	
RD909 Moriat (63)	2015	40%	Warm foam	-	
Abbé Roland roadbed (74)	2016	70%	RAP with polymers	2017	
Passy service area – Le Fayet (74)	2016	70%	Warm foam AMA with polymers	-	
Av. de la Saudrune, Portet sur	2016	40%	Warm foam PMB	-	
Garonne (31)			RAP with polymers Warm foam AMA with polymers Warm foam PMB Warm foam with Warm foam with	2018	
RD1215E, Arsac (33)	2016	30% 50%		-	
RD908 Neuilly-sur-Seine (92)	2018	40%	Warm foam	-	

MURE NP/DVDC NP interactions

End of 2021: Need for more in-depth use of asphalt mix and binder data.

- MURE NP Partners ~ DVDC NP partners
- Common group of experts between the two NPs
- Transfer of surplus from the MURE budget
- ManCo approval
- Findings sent to MURE partners

Monitoring of worksites recorded as an expense in the balance sheet Cerema

Core sampling on R70 worksites.

Context and approach:

- Findings at end of 2021: Appearance of cracks on the ATMB worksite → role of bituminous binder in the defects observed?
- Coring operation on the two R70 worksites (September 2021)
- Selection of analyses and testing laboratory in line with the NP (GT5)
 - Coring operations carried out by EUROVIA (Serge Duplaix)
 - Extraction/recovery of binders: CEREMA AUTUN (Adso Arghyris)
 - Penetrability/RBSP (Ring and Ball Softening Point)/FraasT/G*(15°C/10 Hz): CEREMA AIX (Virginie Mouillet)
 - Carbonyl index by IR spectroscopy: ESTP (Anne Dony)
 - Analysis/interpretation of results: A.Dony/S.Faucon Dumont (Labotech)/ V.Mouillet

ANALYSIS OF CORES FROM THE ATMB WORKSITE

Zones	Sampling zone pathologies	Process	Bottom of cores	Interface	
Passy service area – Le	cracks/	foam R0	CBGM	debonded/debonded	
Fayet (74)	fragmentation	IUdili KU	UGM	debonded/debonded	∽ 2 couches BB
Passy service area – Le	healthy	foam R0	CBGM	bonded/bonded	
Fayet (74)			CBGM	bonded/debonded	
Passy service area – Le	cracks/	foam R70	UGM UGM	bonded/debonded	
Fayet (74)	fragmentation	104111170			
Passy service area – Le Fayet (74)	healthy	foam R70	CBGM	bonded/bonded	
			CBGM	bonded/debonded	
			CBGM	bonded/debonded	
ABBE ROLAND car park E1	healthy	hot R0	UGM	debonded	
ABBE ROLAND car park E2 cycle 1	healthy	hot R70	UGM	debonded	1 aoucho DD
ABBE ROLAND car park E3 cycle 1	healthy	hot R70	UGM	debonded	1 couche BB sur GNT
ABBE ROLAND car park E4 cycle 2	healthy	hot R70	UGM	debonded	
ABBE ROLAND car park E5 cycle 3	healthy	ABBE ROLAND car park E5 cycle 3	UGM	debonded	

- ► Worksite: Passy- Le Fayet service area Foamed warm-mix asphalts with 0% RAP (bitumen 35/50) and 70% RAP (bitumen 160/220)
- Across the 2 zones: **healthy** zones and **cracked** zones.
- In 2016: comparable conventional characteristics
- After 5 years: no significant difference between healthy and cracked zones.
 - Foamed warm-mix asphalt R0: little change in terms of conventional characteristics, increase in G* and Ico → slight hardening and oxidation of the binder.
 - Foamed warm-mix asphalt R70: binder softer than initial binder with G* ~ and Ico < → heterogeneity of different sampling zones.

- Worksite: ABBE ROLAND car park Hot mix asphalts with multirecycling
- No cracked zones
- Logical evolution of conventional and rheological characteristics: slight hardening of binder and increase in G*
- BUT complexity of Icos: systematic decrease ... at odds with the ageing process (tests repeated with same method of testing and analysis)
- Various factors to consider: high recycling rate, sampling in areas ≠, by laboratories ≠ and undoubtedly variable asphalt mix treatment methods.

- Findings and perspectives:
- Define the potential role of binders in the defects observed on worksites with high RAP levels, with warm or hot processes and/or multi-recycling → need to go through the stages of coring and extraction/recovery, followed by the testing previously defined by the MURE NP.
- No difference between the healthy zones and the cracked zones.
- NB: some inconsistencies in results ... despite the suitability of the tests **BUT variety** of coring zones and different sample processing practices, etc.
- Longer-term monitoring is required to provide more precise responses.

- Working group:
 - Jacques-Antoine Decamps (Vinci Construction)
 - Anne Dony (ESTP- Coordinator)
 - Stéphane Faucon Dumont (Labotech)
 - Virginie Mouillet (Cerema Méditerranée/DIMA Project Aix)
 - Aurelia Nicolai (Spie Batignolles Malet)
 - Sébastien Quigniot (Colas CORE)
 - Julien Van Rompu (Eiffage Infrastructure)

- Creation of a coherent database
 - 12 elements from the ANR IMPROVMURE project, provided by CEREMA Aix and the EIFFAGE PhD thesis:
 - Production in lab only
 - 28 elements from the MURE NP provided by GT5 :
 - On-site production with tests carried out by different labs
 - Production in lab (single procedure) with tests carried out by the same lab
 - 9 provided by UGE (ex IFSTTAR) :
 - Semi-industrial lab production (UGE Nantes mixer)
 - A single laboratory for all analyses

Consolidated table of 24 columns (15 with test results and 9 information columns) * 56 rows (asphalt mix formulas)

Creation of 3 sub-databases

MURE NP results	 Database of 28 individuals: binder characteristics, water sensitivity, asphalt mix modulus 	
MURE NP + ANR IMPROVMURE (CEREMA) results	 Database of 40 individuals: binder characteristics, asphalt mix modulus 	Statistical analysis
MURE NP + ANR IMPROVMURE (UGE) results	 Database of 23 individuals: binder characteristics, fatigue life of asphalt mix 	

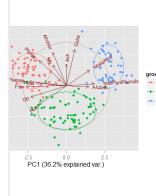
Principle of the statistical method

Univariate analysis

• Summary of variables + identification of suspect points

Bivariate analysis

• Linear links


Multivariate analysis

• Description of multidimensional table with analysis of correlation structure and classification technique

Principal Component Analysis (PCA)

PCA: technique used to represent multidimensional tables

- <u>Variables</u>: structure of linear links
- <u>Individuals</u>: observation of homogeneous groups and atypical individuals



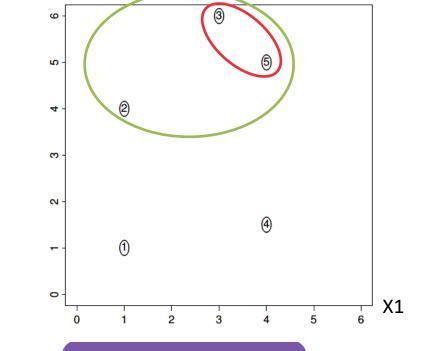
Dimensionality reduction

• Information synthesis

New axes called Principal Components (CPs)

Linear combination of variables

• Minimises information distortion



MULTIVARIATE ANALYSIS - DESCRIPTIVE TECHNIQUES

 Agglomerative Hierarchical Cluster Analysis (AHCA)

AHCA: iterative classification technique

• Allocation into classes (groups) of individuals with common characteristics

Composition

 Step 1: each individual forms a group

Comparison

 Merge the 2 most similar groups (the least dissimilar)

X2

Iterations

• End of algorithm: formation of a single group

Summary

- Partial statistical analysis of the database because of:
 - missing data due to tests not carried out according to the study program
 - varied methodologies depending on the test or place of production (laboratory/worksite)

Findings (A valid strictly within the context of this analysis)

- No proven effect in terms of multi-recycling of asphalt mixes
- Production effect: laboratory vs. worksite
- Effect of ageing protocol: RILEM vs. MURE NP in-situ
- Effect of aggregates on the mechanical performance of asphalt mixes (modulus & fatigue)

Perspectives

- Establish a common statistical strategy (in the form of a charter) in advance of the project
 - Test homogeneity: operating procedure, methodology
 - Data storage: cloud, file format
 - Standardise the database input parameters

Sébastien Quigniot CORE Center by COLAS <u>sebastien.quigniot@colas.com</u> Anne Dony ESTP adony@estp.fr

